IMIDOTETRAFLUOROSULFUR DERIVATIVES – SYNTHESIS, STEREOCHEMICAL RIGIDITY AND *AB INITIO* RESULTS

Matthew Clark, Jon B. Nielsen, Annmarie A. Mauerman and Joseph S. Thrasher*

Department of Chemistry, University of Alabama, P.O. Box H, Tuscaloosa, AL 35487-9671 (U.S.A.)

Imidotetrafluorosulfur derivatives of the type $SF_4NC(0)NR_2$ (1) [where R = CH_3 , C_2H_5 (Clifford, A.; Howell, J. J. Fluorine Chem. 1977, 10, 431)] can be prepared from the reaction of pentafluorosulfanyl isocyanate with dialkylaminotrimethylsilanes. These compounds are formed by the loss of trimethylfluorosilane from the intermediate silylamides $SF_5N(SiMe_3)C(0)NR_2$ (2). Further reaction of 1 with an additional equivalent of nucleophile leads to substitution at the sulfur, i.e. $R_2NSF_3=NC(0)NR_2$ (3). Variable temperature NMR studies have been undertaken in order to elucidate the dynamic intramolecular rearrangements possible in compounds 1 and 3. Th results of this study as well as an abinitio study of the relationship between the orientation of the $S=N\pi$ bond and S=T structural rigidity in $SF_4=NX$ derivatives S=T, S=T,

Attempts to prepare derivatives related to $\underline{1}$ from the reaction of $\mathrm{SF}_5\mathrm{NCO}$ with alkoxytrimethylsilanes gave instead the novel isocyanates $\underline{\mathrm{cis}}\text{-ROSF}_4\mathrm{NCO}$ (4) (where R = CH₃, C₂H₅, n-C₃H₇, and CH₂CH₂OSiMe₃). The fact that only the $\underline{\mathrm{cis}}\text{-products}$ are observed suggests that an intramolecular alkoxy group migration takes place following the loss of trimethylfluorosilane from the intermediate $\mathrm{SF}_5\mathrm{N}(\mathrm{SiMe}_3)\mathrm{C}(0)\mathrm{OR}$ (5). The reaction of 5 with CsF gives the salts $\mathrm{Cs}^+[\mathrm{N}(\mathrm{SF}_5)\mathrm{C}(0)\mathrm{OR}]^-$ (6).